

Chemical Synthesis of ¹³C-Labelled Ganglioside Gb₃ Trisaccharide from [U-¹³C]-D-Glucose¹

Hiroki Shimizu, a,b* Jonathan M. Brown,c Steven W. Homansb and Robert A. Fielda*

^a School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K.
 ^b School of Biomedical Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, U.K.
 ^c Martek Biosciences Corporation, 6480 Dobbin Road, Columbia, Maryland, U.S.A.

Received 29 April 1998; revised 3 June 1998; accepted 11 June 1998

Abstract: The interaction of bacterial toxins with their cell surface glycolipid receptors offers scope for therapeutic intervention. Whilst crystal and solution structures of Escherichia coli verotoxin-1 have been reported, the precise nature of the interaction of the glycolipid binding domain of the toxin with its natural ligand, ganglioside Gb₃ (Gal α 1 \rightarrow 4Gal β 1 \rightarrow 4Gal β 1 \rightarrow 4Gol β 1 \rightarrow 4Cer), remain to be confirmed. To this end we now report the synthesis of the (2-trimethylsilyl)ethyl glycoside of the Gb₃ trisaccharide in isotopically enriched form from [U- 13 C]-D-glucose. © 1998 Elsevier Science Ltd. All rights reserved.

Introduction

The numerous recent worldwide outbreaks of food-poisoning attributable to the enteropathogenic 0157 strain of *Escherichia coli*, and related organisms, are a cause for concern.² The toxins produced by these organisms give rise to debilitating diarrhoea, and can cause death; for patients that recover, there is still a risk of toxin-induced kidney damage. The toxins concerned, the verotoxins (VTs) or Shiga-like toxin (SLTs), are related to the Shiga toxins produced by *Shigella dysenteriae*.³ These proteins also possess structurally and functionally similar AB₅ structures, in common with the heat-labile, diphtheria and cholera toxins.⁴ The B-subunit is responsible for initial adhesion to epithelial cells of the gut wall, through specific recognition of key cell surface glycolipids, and once inside the cell the catalytically active A-subunit causes damage. In the case of the verotoxins, the B-subunits recognise globo-series gangliosides [VT-1 recognises ganglioside Gb₃: $Gal\alpha 1 \rightarrow 4Gal\beta 1 \rightarrow 4Glc\beta \rightarrow Cer$ (1)] on target endothelial cells, and the A-subunit serves as an N-glycosidase that degrades ribosomal RNA and hence shuts down protein synthesis.

HO OH
HO OH
HO OH
HO OH

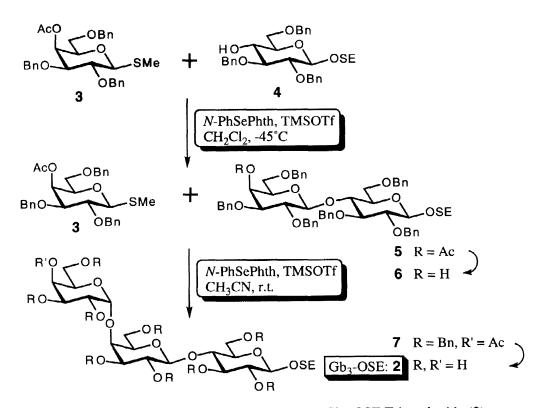
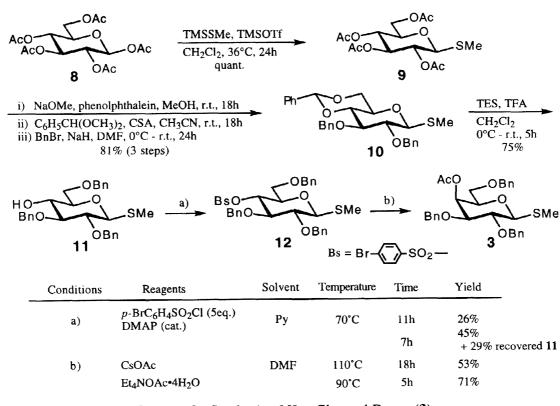

$$R =$$
 $C_{13}H_{27}$
 $C_{13}H_{27}$

Figure 1. Ganglioside Gb₃: Ligand for Verotoxin-1

Crystal structures of the VT-1 B₅ pentamer⁵ and of the related enzymatically active Shiga toxin AB₅ holotoxin have been reported.⁶ The solution structure of VT-1 B₅ pentamer, determined by NMR spectroscopy with the aid of ¹³C, ¹⁵N-enriched protein, has also recently been reported.⁷ All of these structures show a 'doughnut' arrangement of the B₅ system, with the proposed carbohydate binding sites in the vicinity of the subunit interfaces. For the VT: Gb₃ complex, extensive syntheses of ligand analogues⁸ have enabled identification of the key polar contacts between saccharide and protein, and calorimetric studies⁹ in conjunction with site-directed mutagenesis¹⁰ have suggested a key role for Phe-30 in defining the five independent sugar binding sites (one binding site per B sub-unit monomer). This mode of binding is further supported by molecular modelling.¹¹ However, the recent crystal structure of VT-1 complexed with an analogue of Gb₃ surprisingly showed three distinct carbohydrate binding sites per B sub-unit monomer.¹² Further details of the mode of interaction of VT-1 with Gb₃ in solution are clearly required. We have recently been investigating the use of ¹³C-enriched carbohydrate ligands to define protein: carbohydrate interactions.¹³ To this end, we now report the synthesis of the Gb₃-OSE trisaccharide (2) in ¹³C-enriched form from [U-¹³C]-D-glucose.

Results and Discussion

The synthesis of Gb₃ trisaccharide (otherwise known as P_k trisaccharide) has previously been reported by several groups. ¹⁴⁻¹⁶ In our case, the principle consideration was that [U-¹³C]-D-glucose is the only suitable readily available building block. Our synthetic strategy therefore needed to provide access to suitable galactose and glucose building blocks, preferrably from a common precursor. The initially chosen synthetic route to the trimethylsilylethyl (SE)¹⁷ glycoside of Gb₃ trisaccharide (2)¹⁵ is outlined in Scheme 1. This proposed route



Scheme 1. Proposed Synthetic Approach to Gb₃-OSE Trisaccharide (2)

makes use of stereoselective glycosylation reactions, controlled by solvents and temperature, using N-PhSePhth-TMSOTf as a promoter for donor 3, in a similar manner to that reported previously. That is, our expectation was that for formation of the β -linkage the reaction would be carried out at low temperature in a non-polar solvent such as CH_2Cl_2 or toluene. The subsequent α -glycosylation reaction would then be carried out at room temperature in a polar solvent such as CH_3CN (Scheme 1).

Key points in the synthesis of Gb₃-OSE trisaccharide (2). All of the synthetic procedures outlined were optimised with unlabelled material prior to embarking on the synthesis of the 13 C-enriched version of Gb₃-OSE (2). In this synthesis there were two the key considerations: 1) inversion of glucose C-4 stereochemistry to give galacto-configured building blocks, and 2) stereoselective introduction of α - and β -galactopyranosyl linkages.

Known thioglycoside (11)¹⁹ was prepared in 5 steps from glucose pentaacetate (8) (Scheme 2). The free 4-OH group of (11) was sulfonylated for an extended period to give 4-bromobenzenesulfonate (12) in only 26% yield. Shorter reaction times gave higher yields, together with unreacted starting material (11), but the reaction proved impractical, largely due to the lability of sulfonate (12) and the somewhat forcing conditions required to produce it. In addition, attempts to displace the sulfonate group of (12) with cesium acetate²⁰ in DMF, to give galacto-configured acetate (3), required overnight reaction at 110°C and proceeded in only 49% yield. Reaction with tetraethylammonium acetate²¹ in DMF at 90°C for 5h gave an improved 71% yield, but again decomposition of sulfonate (11) was apparent.

Scheme 2. Synthesis of Key Glycosyl Donor (3)

Since the difficulties noted above in the prepartion of galactoside (3) are likely to be attributable to electronic factors associated with the benzyl ether protecting groups, an alternative strategy was adopted that

employed glucoside (13), which contains electron withdrawing benzoyl groups that will stabilise the sulfonate ester group (Scheme 3). Alcohol (13) was treated with 4-bromobenzenesulfonyl chloride and DMAP in pyridine at 70°C gave the relatively robust sulfonate (14) in 87% yield. In light of the change to ester protecting groups in key intermediate (14), it became necessary to consider displacement at C-4 with a nucleophile that offered scope for selective deprotection of the resulting C-4 substituent. Initially the introduction of an acetoxy group at C-4 was investigated using commercially available reagents (Table 1). This met with a degree of success, but subsequent selective removal of the C-4 acetyl group with methanolic HCl²² proved troublesome. Reaction with tetraethylammonium chloracetate was ineffective. Cesium levulinoate was subsequently investigated since the levulinoyl group (Lev) can be selectively removed with hydrazine in the presence of other ester protecting groups.²³ However, the two preferred reagents, Et₄NOLev and CsOLev, are not commercially available and were therefore prepared as outlined in the experimental section [see experimental section under compound (17)]. Et₄NOLev proved ineffective in both toluene and DMF, but reaction of sulfonate (14) with CsOLev in the presence of 18-crown-6 worked well, giving levulinoate (17) in near quantitative yield (Table 1).

Scheme 3. Study of the C-4 Inversion Reaction

Entry	R	Reagents	Solvent	Temperature	Time	Compounds	Yield
1	Ac	(CsOAc 18-crown-6	toluene	reflux	18h	15	74%
2	Ac	Et ₄ NOAc•4H ₂ O	toluene	reflux	18h	15	90%
3	ClAc	Et ₄ NOClAc	toluene	reflux	18h	16	no reaction
4	Lev	Et ₄ NOLev	toluene	reflux	18h	17	no reaction
5	Lev	Et ₄ NOLev	DMF	110°C	18h	17	no reaction
6	Lev	CsOLev 18-crown-6	toluene	reflux	18h	17	93 -99%

Table 1. Study of the C-4 Inversion Reaction of Benzoyl-Protected Glucoside (14)

Synthesis of Gb3 trisaccharide in isotopically enriched form.

The actual synthesis of ¹³C-labelled Gb₃ trisaccharide (3) was carried as reported in Schemes 4 and 5. **Monosaccharide buliding blocks** (Scheme 4) - [¹³C₆]-D-Glucose (18) was converted to peracetate (8), and subsequently via a number of standard steps to (trimethylsilyl)ethyl (SE)¹⁷ glycoside (19). Deacetylation, 4,6-O-benzylidenation and 2,3-di-O-benzylation gave (20) in 74% yield. Subsequent reductive benzylidene

acetal opening with NaHCN₃ and HCl²⁴ then gave the desired glucoside (4)¹⁷ in 91% yield.

Scheme 4. Preparation of ¹³C-Labelled Monosaccharide Building Blocks

Glucose pentaacetate (8) was also converted into methyl thioglucoside (9), which on deacetylation, 4,6-O-benzylidation and 2,3-di-O-benzoylation gave thioglycoside (21).²⁵ Treatment with triethylsilane and trifluoroacetic acid²⁶ gave alcohol (13), which was sulfonylated to give gluco-configured 4-bromobenzenesulfonate (14). Treatment with CsOLev and 18-crown-6 in refluxing toluene then gave C-4 levulinoate-protected thiogalactoside (17) in good yield.

Our initial aim was to use thiogalactoside (3) as the building block for introduction of the α -galactosyl unit (Scheme 1). We also noted that the straightforward introduction of this moiety into Gb₃ had been reported by

Magnusson and co-workers,⁸ who routinely employ 2,3,4,6-tetra-O-benzyl- α -D-galactopyranosyl chloride (23) in conjunction with silver triflate for this purpose. Thioglycoside (17) was therefore also converted to per-O-benzylated thioglycoside (22) (Scheme 4), and some of this material was subsequently coverted to the desired α -galactosyl halide building block (23) by treatment with ICl.²⁷

Coupling chemistry (Scheme 5) - Glycosylation of SE glucoside (4) with thiogalactoside (17) was carried out with N-PhSePhth-TMSOTf, as reported by Shimizu et al. 18 The resulting lactose unit (24) was treated with hydrazine acetate in methanol overnight to effect selective de-O-levulinoylaton, 23 giving the lactoside acceptor (25). Initial attempts to glycosylate this acceptor with thiogalactoside (22), as originally planned (Scheme 1), proved fruitless; the stereoselectivity of the reaction was poor and the yield uncomforately low (α : β , approx. 3:2; yield approx. 14%). We therefore resorted to using galactosyl chloride (23) as a glycosyl donor in the presence of silver triflate, which gave protected SE Gb3 trisaccharide (26) in 88% yield; only α -glycosylation was observed. De-O-benzoylation followed by de-O-benzylation of (26) gave the desired ¹³C-labelled Gb3-OSE, (2).

Scheme 5. Glycosylation and Deprotection

Conclusions

In summary, we have accomplished the synthesis of the 13 C-enriched trisaccharide component of ganglioside Gb₃ [Gal α 1 \rightarrow 4Gal β 1 \rightarrow 4Glu β \rightarrow OSE, (2)] from [U- 13 C]-D-glucose in 22 steps and an overall yield of 19%. Structural studies on the interaction of 13 C-enriched Gb₃-OSE (2) with the glycolipid-binding B-subunit of verotoxin-1 will be reported in due course.

Experimental

General. All reagents were used as purchased without further purification. Solvents used for reactions were dried by distillation and stored over suitable activated molecular sieves. [U-13C]-Labelled glucose (98% enrichment) was produced by Martek Biosciences Corporation (Columbia, MD, U.S.A.). Reactions were monitored by TLC, which was performed with 0.25 mm Macherey-Nagel precoated silica gel SIL G-25 on glass. Compounds were detected by dipping the TLC plates in an ethanolic solution of sulfuric acid (5% v/v) and heating. Sorbsil C60 40/60 A (Sorbsil Chromatography Media) was used for silica gel chromatography. Melting points were determined on a Gallenkamp Melting Point Apparatus and are uncorrected. Optical rotations were recorded on an Optical Activity Ltd. AA-1000 Polarimeter at room temperature (approx. 18 to 23°C). All NMR data are reported in parts per million downfield shift from tetramethylsilane. ¹H NMR spectra were routinely recorded at 300 MHz on a Varian Gemini 2000 spectrometer, or at 500MHz on a Varian Unity plus with broadband carbon decoupling for ¹³C-enriched compounds. Chemical shifts are expressed relative to that of the residual proton in the NMR solvents [8 7.26 ppm and 4.70 ppm for residual CHCl₃ and HOD, respectively]. ¹³C NMR spectra were recorded at 75.47 MHz on a Varian Gemini 2000 spectrometer, and chemical shifts are expressed relative to that of the deuterated solvents [\delta 77.0 ppm and 29.8 ppm for CDCl₃ and (CD₃)₂C=O, respectively]. Microanalyses were performed by the in-house analytical service of this department. FAB-mass data were recorded by the in-house mass spectrometry service of this department, and at the EPSRC Mass Spectrometry Service Centre, Swansea.

For simplicity, experimental details are reported for the synthesis of unlabelled compounds due to complications arising from strong C-H and C-C coupling in ¹H and ¹³C NMR spectra, respectively, of enriched compounds. Only partial NMR data are reported for protected compounds; other spectral features were in accord with proposed structures. The structures of ¹³C-labelled synthetic intermediates were confirmed by comparison of chromatographic data for all compounds. Carbon-decoupled ¹H NMR data for some compounds were also compared with that obtained for the corresponding unlabelled compounds, and selected intermediates were characterised by mass spectrometry. Compounds designated as [¹³C₆]-labelled are derived from [U-¹³C₆]-D-glucose.

Experimental details are reported in the same order as the compounds appear in the text except where compounds have been subsequently re-made in ¹³C-labelled form. In this case the compounds appear in the order that they are referred to in Schemes 4 and 5.

Methyl 2,3,6-tri-*O*-benzyl-4-*O*-(4-bromobenzenesulfonyl)-1-thio-β-D-glucopyranoside (12) To a solution of 11^{19} (166 mg, 345 μmol) in pyridine (12 ml) was added 4-bromobenzenesulfonyl chloride (640 mg, 2.51 mmol) and 4-dimethylaminopyridine (cat.). The mixture was stirred for 11h at 70°C, cooled to room temperature and diluted with EtOAc and water. The aqueous layer was extracted three times with EtOAc and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (430 mg) was purified by column chromatography [silica gel (22 g); toluene/EtOAc (15/1-15/1)] to give 12 (62 mg, 26% yield). Reaction of 4-bromobenzenesulfonyl chloride (570 mg, 2.23 mmol) and 4-dimethylaminopyridine (cat.) with 7 (215 mg, 446μmol) for 7h at 70°C gave 12 (157 mg, 45% yield) and recovered 7 (63 mg, 29 %); 12: Rf 0.68 [toluene/EtOAc (7/1)]; m.p. 83-84 °C (*n*-hexane/Et₂O); [α]_D +10.7 (c 3.0, CHCl₃); Found: C, 58.56; H, 5.15. C₃₄H₃₅O₇S₂ requires: C, 58.37; H, 5.04%; ¹H NMR (CDCl₃) δ: 2.24, (s, 3H, SCH₃), 3.52 (t, 1H, J = 9.6 Hz, H-2), 3.63 (dd, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 Hz, H-2), 3.63 (dd, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 Hz, H-2), 3.63 (dd, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 Hz, H-2), 3.63 (dd, 1H, J = 9.6 and 8.7 Hz, H-3), 4.35 (d, 1H, J = 9.6 Hz, H-2), 3.63 (dd, 1H, J = 9.6 Hz, H-2), 3.63 (dd,

= 9.6 Hz, H-1), 4.47 (d, 1H, J = 9.6 Hz, C₆H₅CH₂O), 4.52 (s, 2H, C₆H₅CH₂O), 4.64 (d, 1H, J = 12.0 Hz, C₆H₅CH₂O), 4.77 (d, 1H, J = 11.4 Hz, C₆H₅CH₂O), 4.82 (t, 1H, J = 8.7 Hz, H-4), 4.85 (d, 1H, J = 10.2 Hz, C₆H₅CH₂O), 7.19-7.65 (m, 19 H, aromatic-H); ¹³C NMR (CDCl₃) δ : 12.65, 68.62, 73.41, 74.92, 75.42, 77.57, 78.33, 81.15, 83.15, 85.19, 126.98, 127.54, 127.62, 128.04, 128.38, 128.42, 128.80, 129.20, 132.24, 136.20, 137.43, 137.89, 138.12.

Methyl 4-O-acetyl-2,3,6-tri-O-benzyl-1-thio-β-D-galactopyranoside (3)

Reaction with Cesium Acetate - To a stirred solution of 12 (82 mg, 117 μmol) in DMF (2 ml) was added cesium acetate (140 mg, 729 μmol) and the mixture was stirred at 110°C overnight. On cooling to room temperature the reaction mixture was diluted with diethyl ether and water. The aqueous layer was extracted three times with diethyl ether, and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (200 mg) was purified by column chromatography [silica gel (10 g); toluene/EtOAc (30/1)] to give 3 (32 mg, 53 % yield).

Reaction with Tetraethylammonium Acetate - To a stirred solution of 12 (108 mg, 154 μmol) in DMF (2 ml) was added Et₄NOAc•4H₂O (232 mg, 888 μmol) and the mixture was stirred for 5 h at 90°C. On cooling to room temperature the reaction mixture was diluted with diethyl ether and water. The aqueous layer was extracted three times with diethyl ether, and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (100 mg) was purified by column chromatography [silica gel (5 g); toluene/EtOAc (30/1)] to give 3 (58 mg, 71 % yield); 3: Rf 0.59 [toluene/EtOAc (7/1)]; m.p. 79-80 °C (*n*-hexane/Et₂O); [α]_D +11.3 (c 2.3, CHCl₃); Found: C, 68.92; H, 6.99. C₃₀H₃₄O₆S requires: C, 68.94; H, 6.56%; ¹H NMR (CDCl₃) δ: 2.09, (s, 3H, CH₃C=O or SCH₃), 2.24, (s, 3H, CH₃CO or SCH₃), 3.74 (t, 1H, J = 6.6 Hz, H-5), 4.39 (d, 1H, J = 8.4 Hz, H-1), 4.46 (d, 1H, J = 12.0 Hz, C₆H₅CH₂O), 4.51 (d, 1H, J = 11.1 Hz, C₆H₅CH₂O), 4.56 (d, 1H, J = 12.0 Hz, C₆H₅CH₂O), 4.74 (s, 2H, C₆H₅CH₂O), 4.78 (d, 1H, J = 11.1 Hz, C₆H₅CH₂O), 5.65 (d, 1H, J = 2.4 Hz, H-4), 7.28-7.39 (m, 15 H, aromatic-*H*); ¹³C NMR (CDCl₃) δ: 12.97, 20.83, 66.92, 68.08, 71.87, 73.72, 75.84, 77.20, 81.05, 85.88, 127.85, 127.88, 127.97, 128.14, 128.25, 128.41, 128.54, 137.71, 137.81, 138.17, 170.48.

Methyl 4-O-acetyl-2,3-di-O-benzoyl-6-O-benzyl-1-thio-β-D-galactopyranoside (15)

Reaction with Cesium Acetate - To a stirred solution of 14 (75 mg, 104 μmol) in toluene (2 ml) were added cesium acetate (242 mg, 1.26 mmol) and 18-crown-6 (30 mg, 114 μmol) and the mixture was refluxed overnight. On cooling to room temperature the reaction mixture was diluted with EtOAc and water. The aqueous layer was extracted three times with EtOAc, and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (300 mg) was purified by column chromatography [silica gel (15 g); toluene/EtOAc (15/1)] to give 15 (42 mg, 74 % yield).

Reaction with Tetraethylammonium Acetate - To a stirred solution of 14 (74 mg, 102 μmol) in toluene (2 ml) were added tetraethyl ammonium acetate (130 mg, 497 μmol) and the mixture was refluxed overnight. On cooling to room temperature the reaction mixture was diluted with EtOAc and water. The aqueous layer was extracted three times with EtOAc, and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (200 mg) was purified by column chromatography [silica gel (10 g); toluene/EtOAc (15/1-7/1)] to give 15 (51 mg, 90 % yield); 15: Rf 0.38 [toluene/EtOAc (7/1)]; m.p. 145-146 °C (*n*-hexane/Et₂O); [α]_D +16.6 (c 0.75, CHCl₃); Found: C, 65.37; H, 5.77. C₃₀H₃₀O₈S

requires: C, 65.44; H, 5.49%; ¹H NMR (CDCl₃) δ : 2.06, (s, 3H, CH₃CO or SCH₃), 2.26, (s, 3H, CH₃C=O or SCH₃), 3.54 (dd, 1H, J = 9.9 and 6.3 Hz, H-6), 3.65 (dd, 1H, J = 9.9 and 6.3 Hz, H-6), 4.07 (t, 1H, J = 6.3 Hz, H-5), 4.46 (d, 1H, J = 12.0 Hz, C₆H₅CH₂O), 4.59 (d, 1H, J = 12.0 Hz, C₆H₅CH₂O), 4.65 (d, 1H, J = 9.9 Hz, H-1) 5.47 (dd, 1H, J = 9.9 and 3.0 Hz, H-3), 5.71 (t, 1H, J = 9.9 Hz, H-2), 5.76 (d, 1H, J = 3.0 Hz, H-4), 7.16-7.54 (m, 11 H, aromatic-H), 7.87-7.98 (m, 4 H, aromatic-H); ¹³C NMR (CDCl₃) δ : 11.68, 20.93, 67.59, 67.63, 68.02, 72.83, 73.57, 76.23, 76.81, 83.77, 127.92, 128.04, 128.28, 128.45, 128.53, 129.14, 129.31, 129.69, 129.89, 133.36, 165.59, 169.95, 171.27.

Synthesis of ^{13}C -Labelled Gb₃ Trisaccharide. 1,2,3,4,6-Penta-O-acetyl- α , β -D-glucopyranose (8) 28

Synthesis of Unlabelled 8. To a stirred, ice-cold solution of acetic anhydride (10.0 ml, 106 mmol) and pyridine (14.0 ml, 174 mmol) was added β -D-glucose (2.00 g, 11.1 mmol). Once the starting material had dissolved, the mixture was allowed to gradually warm to room temperature and was stirred overnight. The reaction mixture was poured into iced-water (40 ml) and stirred for 1h. The resulting precipitate was removed by filtration, washed twice with iced-water and air dried to give β -8 (3.08 g, 71 %). The filtrate was extracted three times with EtOAc, the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (4.4 g) was purified by column chromatography [silica gel (220 g); toluene/EtOAc (2/1)] to give further α - and β -8 (1.02 g, 24%; total 95 % yield); β -8: Rf 0.44 [toluene/EtOAc (2/1)]; ¹H NMR (CDCl₃) δ : 2.01 (s, 3H, COCH₃), 2.03 (s, 3H, COCH₃), 2.08 (s, 3H, COCH₃), 2.11 (s, 3H, COCH₃), 3.84 (ddd, 1H, J = 9.6, 4.5 and 2.1 Hz, H-5), 4.11 (dd, 1H, J = 12.6 and 2.1 Hz, H-6), 4.28 (dd, 1H, J = 12.6 and 4.5 Hz, H-6), 5.13 (dd, 1H, J = 9.6 and 9.3 Hz, H-4), 5.14 (dd, 1H, J = 9.3 and 8.1 Hz, H-2), 5.25 (t, 1H, J = 9.3 Hz, H-3), 5.72 (d, 1H, J = 8.1 Hz, H-1).

Synthesis of $[^{13}C_6]$ -8. Using the procedure described above, reaction of $[U^{-13}C]$ -glucose (2.50 g, 13.5 mmol) with acetic anhydride (12.5 ml, 132 mmol) and pyridine (17.5 ml, 216 mmol) gave β - $[^{13}C_6]$ -8 (4.36 g, 82 %) and α - and β - $[^{13}C_6]$ -8 (899 mg, 17 %; total 99 % yield); TLC mobility and carbon decoupled 1H NMR data in agreement with that of the unlabelled compounds. Found: m/z(FAB), 419 $[M+Na]^+$. $^{13}C_6^{12}C_{10}H_{22}O_{11}$ requires: 396.

(2-Trimethylsilyl)ethyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranoside (19)¹⁷

Synthesis of Unlabelled 19. To a stirred, ice-cold solution of 8 (6.00g, 15.1 mmol) in dichrolomethane (18 ml), acetic acid (6 ml) and acetic anhydride (6 ml) was added dropwise HBr in acetic acid (45 % w/v, 18 ml, 100 mmol). The mixture was allowed to gradually warm to room temperature and was stirred overnight. The reaction mixture was neutralised by careful addition of NaHCO₃ (100 g) and iced-water, and the aqueous solution was extracted three times with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue was dissolved in dry CH₂Cl₂ (70 ml), and (2-trimethylsilyl)ethanol (7 ml, 48.8 mmol), mercury (II) oxide (3.60 g, 16.6 mmol) and mercury (II) bromide (900 mg, 2.50 mmol) were added. The resulting suspension was stirred for 24h at room temperature. The reaction mixture was then diluted with CHCl₃, stirred with KI and NaHCO₃ solution for 2h at room temperature, and filtered through a pad of Celite. The aqueous eluate was extracted four times with CHCl₃, and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (12 g) was purified by column chromatography [silica gel (360 g); toluene/EtOAc (5/1)] to give 19 (5.92g, 86 % yield); Rf 0.58

[toluene/EtOAc (2/1)]; ¹H NMR (CDCl₃) δ : -0.01 (s, 9H, OCH₂CH₂SiMe₃), 0.83-1.02 (m, 2H, OCH₂CH₂SiMe₃), 1.99 (s, 3H, COCH₃), 2.01 (s, 3H, COCH₃), 2.03 (s, 3H, COCH₃), 2.07 (s, 3H, COCH₃), 3.56 (dt, 1H, J = 9.9 and 6.9 Hz, OCH₂CH₂SiMe₃), 3.68 (ddd, 1H, J = 9.6, 4.8 and 2.4 Hz, H-5), 3.97 (dt, 1H, J = 9.9 and 6.0 Hz, OCH₂CH₂SiMe₃), 4.12 (dd, 1H, J = 12.3 and 2.4 Hz, H-6), 4.26 (dd, 1H, J = 12.3 and 4.8 Hz, H-6), 4.51 (d, 1H, J = 7.8 Hz, H-1), 4.97 (dd, 1H, J = 9.6 and 7.8 Hz, H-2), 5.08 (t, 1H, J = 9.6 Hz, H-4), 5.19 (t, 1H, J = 9.6 Hz, H-3).

Synthesis of $[^{13}C_6]$ -19. Using the procedure described above, reaction of $[^{13}C_6]$ -8 (899 mg, 2.27 mmol) with acetic acid (3 ml), acetic anhydride (1 ml) and HBr in acetic acid (45 % w/v, 3 ml, 16.7 mmol) gave the corresponding glycosyl bromide which on reaction with (2-trimethylsilyl)ethanol (1 ml, 6.98 mmol), mercury (II) oxide (543 mg, 2.51 mmol) and mercury (II) bromide (137 mg, 380 μ mol) in dry CH₂Cl₂ (10 ml) gave $[^{13}C_6]$ -19 (935 mg, 91 % yield); TLC mobility in agreement with that of the unlabelled compound. Found: m/z(FAB), 477 [M+Na]+. $^{13}C_6^{12}C_{13}H_{32}O_{10}Si$ requires: 454.

(2-Trimethylsilyl)ethyl 2,3-di-O-benzyl-4,6-O-benzylidene-β-D-glucopyranoside (20)¹⁷

Synthesis of Unlabelled 20. To a solution of 19 (1.19 g, 2.65 mmol) in MeOH (25 ml) containing phenolphthalein (cat.) was added sodium methoxide (cat.) and the mixture was stirred overnight at room temperature. The reaction mixture was neutralised with Amberlite IRC-50 (H+) ion-exchange resin, filtered and concentrated in vacuo. The residue was dissolved in dry CH₃CN (15 ml), benzaldehyde dimethyl acetal (660 μl, 4.40 mmol) and camphorsulfonic acid (126 mg, 542 μmol) were added, and the mixture was stirred overnight at room temperature. The reaction mixture was neutralised with sat. NaHCO3 solution and the resulting aqueous solution was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was dissolved in dry DMF (12 ml), and benzyl bromide (450 µl, 3.78 mmol) and sodium hydride (250 mg, 60% dispersion in mineral oil, 6.25 mmol) were added successively at 0°C. The mixture was stirred for 24h at room temperature, quenched by careful addition of MeOH, and diluted with diethyl ether and water. The aqueous layer was extracted four times with diethyl ether. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The resulting residue (0.8 g) was purified by column chromatography [silica gel (40 g); toluene/EtOAc (15/1)] to give **20** (749 mg, 51 % yield); Rf 0.60 [toluene/EtOAc (9/1)]; ¹H NMR (CDCl₃) δ: 0.03 (s, 9H, $OCH_2CH_2SiMe_3$), 1.04, (dd, 2H, J = 9.6 and 7.8 Hz, $OCH_2CH_2SiMe_3$), 4.36 (dd, 1H, J = 10.5 and 4.8 Hz, H-6), 4.51 (d, 1H, J = 7.8 Hz, H-1), 4.78 (d, 1H, J = 11.1 Hz, $C_6H_5CH_2O$), 4.80 (d, 1H, J = 11.1 Hz, $C_6H_5CH_2O$), 4.91 (d, 2H, J = 11.1 Hz, $C_6H_5CH_2O$ X 2), 5.57 (s, 1H, C_6H_5CH), 7.25-7.51 (m, 15H, aromatic-H).

Synthesis of $[^{13}C_6]$ -20 Using the procedure described above, reaction of $[^{13}C_6]$ -19 (757 mg, 1.67 mmol) with sodium methoxide (cat.) in MeOH (3 ml) conating phenolphthalein (cat.) gave the deprotected sugar. Subsequent reaction with benzaldehyde dimethyl acetal (270 μ l, 1.80 mmol) and camphorsulfonic acid (45 mg, 0.194 mmol) in CH₃CN (30 ml) gave the benzylidene acetal, which on benzylation with benzyl bromide (700 μ l, 5.89 mmol) and sodium hydride (290 mg, 60% dispersion in mineral oil, 7.25 mmol) in dry DMF (15 ml) gave [$^{13}C_6$]-20 (682 mg, 74 % yield); TLC mobility in agreement with that of the unlabelled compound.

(2-Trimethylsilyl)ethyl 2,3,6-tri-O-benzyl- β -D-glucopyranoside (4)¹⁷

Synthesis of Unlabelled 4. To an ice-cold, stirred mixture of 20 (273 mg, 498 µmol) and sodium

cyanoborohydride (250 mg, 3.98 mmol) in dry THF (10 ml) containing methyl orange (cat.) and 4Å molecular sieves (1 g) was added dropwise HCl-saturated diethyl ether until a pink colouration persisted in the reaction mixture. The mixture was allowed to gradually warm to room temperature and was stirred overnight. The reaction mixture was then diluted with EtOAc, neutralised with sat. NaHCO3 solution and filtered through a pad of Celite. The aqueous eluate was extracted three times with EtOAc and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (650 mg) was purified by column chromatography [silica gel (30 g); toluene/EtOAc (15/1)] to give 4 (141 mg, 51 % yield); Rf 0.49 [toluene/EtOAc (7/1)]; ¹H NMR (CDCl₃) δ : 0.03 (s, 9H, OCH₂CH₂SiMe₃), 1.01-1.07 (m, 2H, OCH₂CH₂SiMe₃), 2.55 (d, 1H, J = 1.8 Hz, OH), 4.43 (d, 1H, J = 7.2 Hz, H-1), 4.59 (d, 1H, J = 12.3 Hz, C₆H₅CH₂O), 4.59 (d, 1H, J = 12.3 Hz, C₆H₅CH₂O), 4.73 (d, 2H, J = 11.1 Hz, C₆H₅CH₂O X 2), 4.94 (d, 1H, J = 11.1 Hz, C₆H₅CH₂O), 4.97 (d, 1H, J = 11.1 Hz, C₆H₅CH₂O), 7.24-7.35 (m, 15H, aromatic-H). Synthesis of [13 C₆]-4. Using the procedure described above, reaction of [13 C₆]-20 (323 mg, 583 µmol) in dry THF (9 ml) with sodium cyanoborohydride (346 mg, 5.51 mmol), methyl orange (cat.), 4Å molecular sieves (1.17 g) and HCl-saturated diethylether gave [13 C₆]-4 (295 mg, 91% yield); TLC mobility and carbondecoupled ¹H NMR data in agreement with that of the unlabelled compound.

Methyl 2,3,4,6-tetra-O-acetyl-1-thio- β -D-glucopyranoside (9)²⁹

Synthesis of Unlabelled 9. To a stirred solution of 8 (10.0 g, 25.6 mmol) and (methylthio)trimethylsilane (5.00 ml, 35.3 mmol) in dry CH₂Cl₂ (100 ml) was added trimethylsilyl trifuluoromethanesulfonate (4.50 ml, 24.9 mmol) dropwise at room temperature and the mixture was subsequently stirred for 24h at 36°C. The reaction mixture was then diluted with EtOAc and neutralised with sat. NaHCO₃ solution. The aqueous layer was extracted three times with EtOAc and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (8.3 g) was purified by column chromatography [silica gel (250 g); toluene/EtOAc (9/1-7/1)] to give 9 (6.60 g, 68 % yield); Rf 0.33 [toluene/EtOAc (2/1)]: ¹H-NMR (CDCl₃) δ : 2.01 (s, 3H, SCH₃ or COCH₃), 2.03 (s, 3H, SCH₃ or COCH₃), 2.06 (s, 3H, SCH₃ or COCH₃), 2.08 (s, 3H, SCH₃ or OCH₃), 2.17 (s, 3H, SCH₃ or COCH₃), 3.73 (ddd, 1H, J = 12.3, 4.8 and 2.4 Hz, H-5), 4.15 (dd, 1H, J = 12.3 and 2.4 Hz, H-6), 4.25 (dd, 1H, J = 12.3 and 4.8 Hz, H-6), 4.39 (d, 1H, J = 9.6 Hz, H-1), 5.07 (t, 1H, J = 9.6 Hz, H-3 or H-4), 5.08 (t, 1H, J = 9.6 Hz, H-3 or H-4), 5.25 (t, 1H, J = 9.6 Hz, H-2).

Synthesis of $[^{13}C_6]$ -9. Using the procedure described above, reaction of $[^{13}C_6]$ -8 (1.02 g, 2.57 mmol) with (methylthio)trimethylsilane (1.00 ml, 7.07 mmol) and trimethylsilyl trifuluoromethanesulfonate (300 μ l, 1.66 mmol) in dry CH₂Cl₂ (10 ml) gave recovered $[^{13}C_6]$ -8 (70 mg) and product $[^{13}C_6]$ -9 (921 mg, 93 % yield based on isolated product; quantitative yield based on recovered $[^{13}C_6]$ -8); TLC mobility in agreement with that of the unlabelled compound.

Methyl 2,3-di-O-benzoyl-4,6-O-benzylidene-1-thio- β -D-glucopyranoside (21)²⁴

Synthesis of Unlabelled 21. To a solution of 9 (1.25 g, 3.30 mmol) in MeOH (10 ml) containing phenolphthalein (cat.) was added sodium methoxide (cat.) and the mixture was stirred overnight at room temperature. The reaction mixture was neutralised with Amberlite IRC-50 (H⁺) ion-exchange resin, filtered and concentrated *in vacuo*. The resulting residue was dissolved in dry CH₃CN (150 ml), and benzaldehyde dimethylacetal (1.00 ml, 6.66 mmol) and camphorsulfonic acid (150 mg, 646 µmol) were added. The mixture

was stirred overnight at room temperature and neutralised with sat. NaHCO₃ solution. The aqueous solution was extracted four times with EtOAc and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue was dissolved with pyridine (2 ml) and benzoyl chloride (2.00 ml, 17.2 mmol) in dichloromethane (40 ml) was added dropwise at 0°C. The mixture was stirred for 24h at room temperature, diluted with EtOAc and water, and the aqueous layer was extracted four times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The resulting residue (4.3 g) was purified by column chromatography [silica gel (200 g); toluene/EtOAc (10/1)] to give 21 (1.51 g, 90 % yield); Rf 0.72 [toluene/EtOAc (7/1)]; 1 H NMR (CDCl₃) δ : 2.25 (s, 1H, SCH₃), 4.72 (d, 1H, J = 9.9 Hz, H-1), 5.55 (dd, 1H, J = 9.9 and 9.6 Hz, H-2), 5.56 (s, 1H, C₆H₅CH), 5.82 (t, 1H, J = 9.6 Hz, H-3).

Synthesis of $[^{13}C_6]$ -21. Using the procedure described above, deprotection of $[^{13}C_6]$ -9 (920 mg, 2.93 mmol) with sodium methoxide (cat.) and phenolphthalein (cat.) in MeOH (10 ml), followed by reaction with benzaldehyde dimethylacetal (500 μ l, 3.33 mmol) and camphorsulfonic acid (108 mg, 0.465 mmol) in dry CH₃CN (30 ml), and subsequent esterification with benzoyl chloride (3.00 ml, 25.8 mmol) and pyridine (15 ml) gave $[^{13}C_6]$ -21 (1.20 g, 98 % yield); TLC mobility in agreement with that of the unlabelled compound.

Methyl 2,3-di-O-benzoyl-6-O-benzyl-1-thio-β-D-glucopyranoside (13)

Synthesis of Unlabelled 13. To a stirred, ice-cold solution of 21 (1.51g, 2.98 mmol) and triethylsilane (3.60 ml, 22.5 mmol) in CH₂Cl₂ (18 ml) was added dropwise trifluoroacetic acid (2.00 ml, 22.6 mmol). The mixture was stirred for 5h as it was allowed to slowly warm to room temperature. The reaction mixture was then diluted with EtOAc and neutralised with sat. NaHCO₃ solution. The aqueous layer was extracted three times with EtOAc, and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (3 g) was purified by column chromatography [silica gel (150 g); toluene/EtOAc (7/1)] to give 13 (1.34 g, 88 % yield); Rf 0.30 [toluene/EtOAc (2/1)]; $[\alpha]_D$ +69.3 (c 1.2, CHCl₃); Found: C, 65.94; H, 5.80. C₂₈H₂₈O₇S requires: C, 66.13; H, 5.55%; ¹H NMR (CDCl₃) δ : 2.22 (s, 3H, SCH₃), 3.21 (d, 1H, J = 3.3 Hz, OH), 3.98 (dt, 1H, J = 9.0 and 3.3 Hz, H-4), 4.60 (d, 1H, J = 9.6 Hz, H-1), 4.61 (d, 1H, J = 12.3 Hz, C₆H₅CH₂O), 4.64 (d, 1H, J = 12.3, C₆H₅CH₂O), 5.44-5.53 (m, 2H, H-2 and H-3), 7.29-7.98 (m, 15 H, aromatic-H); ¹³C NMR (CDCl₃) δ : 11.31, 69.53, 69.79, 73.67, 77.45, 78.94, 82.94, 127.77, 127.87, 128.38, 128.50, 129.14, 129.24, 129.83, 129.89, 133.27, 133.39, 137.75, 165.51, 167.04. Synthesis of [¹³C₆J-13. Using the procedure described above, reaction of [¹³C₆J-21 (1.05 g, 2.05 mmol) with triethylsilane (3.00 ml, 18.8 mmol) and trifluoroacetic acid (1.60 ml, 18.1 mmol) in CH₂Cl₂ (18 ml) gave [¹³C₆J-13 (973 mg, 92 % yield); TLC mobility in agreement with that of the unlabelled compound.

Methyl 2,3-di-O-benzoyl-6-O-benzyl-4-O-(4-bromobenzenesulfonyl)-1-thio- β -D-glucopyranoside (14)

Synthesis of Unlabelled 14. To a solution of 13 (124 mg, 244 μmol) in pyridine (12 ml) was added 4-bromobenzenesulfonyl chloride (310 mg, 1.21 mmol) and 4-dimethylaminopyridine (cat.). The mixture was stirred for 14h at 70°C, cooled to room temperature and diluted with EtOAc and water. The aqueous layer was extracted three times with EtOAc and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (320 mg) was purified by column chromatography [silica gel (15 g); toluene/EtOAc (20/1-15/1)] to give 14 (154 mg, 87 % yield); Rf 0.56 [toluene/EtOAc (15/1)];

m.p. 145-146 °C (toluene/EtOAc); [α]_D +24.6 (c 2.0, CHCl₃); Found: C, 55.88; H, 4.20. C₃₄H₃₁O₉BrS₂ requires: C, 56.12; H, 4.29%; ¹H NMR (CDCl₃) δ : 2.22 (s, 3H, SCH₃), 3.76 (dd, 1H, J = 11.1 and 3.9 Hz, 6-H), 4.58 (d, 1H, J = 9.6 Hz, H-1), 4.61 (d, 1H, J = 12.3 Hz, C₆H₅CH₂O), 4.66 (d, 1H, J = 12.3 Hz, C₆H₅CH₂O), 5.15 (t, 1H, J = 9.6 Hz, H-2, H-3 or H-4), 5.42 (t, 1H, J = 9.6 Hz, H-2, H-3 or H-4), 5.71 (t, 1H, J = 9.6 Hz, H-2, H-3 or H-4), 7.19-7.86 (m, 19 H, aromatic-H); ¹³C NMR (CDCl₃) δ : 11.30, 68.15, 69.89, 73.47, 73.59, 77.99, 82.97, 127.75, 127.85, 128.40, 128.44, 128.78, 128.93, 129.80, 129.85, 132.27, 133.37, 133.56, 135.71, 138.01, 165.19.

Synthesis of $[^{13}C_6]$ -14. Using the procedure described above, reaction of $[^{13}C_6]$ -13 (727 mg, 1.41 mmol) with 4-bromobenzenesulfonyl chloride (2.08 g, 8.14 mmol), 4-dimethylaminopyridine (cat.) and pyridine (12 ml) gave $[^{13}C_6]$ -14 (943 mg, 91 % yield); TLC mobility in agreement with that of the unlabelled compound; Found: C, 56.58; H, 4.32%. $^{13}C_6C_{28}H_{31}O_9BrS_2$ requires: C, 56.47; H, 4.26%; Found: m/z(FAB), 757 [M+Na]+. $^{13}C_6^{12}C_{28}H_{31}O_9BrS_2$ requires 734.

Methyl 2,3-di-O-benzoyl-6-O-benzyl-4-O-levulinoyl-1-thio-β-D-galactopyranoside (17)

Synthesis of Unlabelled 17. Levulinic acid (860 µl, 8.40 mmol) was added dropwise to a stirred solution of cesium hydroxide monohydrate (1.37 g, 8.18 mmol) in MeOH (2 ml) and the mixture was stirred for 1h at room temperature. The reaction mixture was concentrated in vacuo to give cesium levulinoate (2.03 g, quant.) which was used directly in the next step. To a stirred solution of 14 (197 mg, 271 µmol) in toluene (2 ml) were added cesium levulinoate (280 mg, 1.13 mmol) and 18-crown-6 (66 mg, 250 µmol) and the mixture was refluxed overnight. On cooling to room temperature the reaction mixture was diluted with EtOAc and water. The aqueous layer was extracted three times with EtOAc, and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The resulting residue (220 mg) was purified by column chromatography [silica gel (11 g); toluene/EtOAc (15/1-7/1)] to give recovered 14 (85 mg) and product 17 (93 mg, 52 % yield based on isolated product; quantitative yield based on recovered 14); Rf 0.20 [toluene/EtOAc (15/1)]; $[\alpha]_D$ +61.0 (c 1.5, CHCl₃); Found: C, 65.53; H, 5.79. C₃₃H₃₄O₉S requires: C, 65.33; H, 5.65%; ¹H NMR (CDCl₃) δ : 2.11 (s, 3H, COCH₃ or SCH₃), 2.25 (s, 3H, COCH₃ or SCH₃), 2.58-2.69 (m, 4H, $OCH_2CH_2COCH_3$), 3.57 (dd, 1H, J = 9.6 and 6.9 Hz, H-6), 3.68 (dd, 1H, J = 9.6 and 5.7 Hz, H-6), 4.05 (dd, 1H, J = 6.9 and 5.7 Hz, H-5), 4.50 (d, 1H, J = 12.0 Hz, $C_6H_5CH_2O$), 4.55 (d, 1H, J = 12.0 Hz, $C_6H_5CH_2O$), 4.64 (d, 1H, J = 9.9 Hz, H-1), 5.47 (dd, 1H, J = 9.9 and 3.3 Hz, H-3), 5.69 (t, 1H, J = 9.9Hz, H-2), 5.77 (d, 1H, J = 3.3 Hz, H-4), 7.16-7.98 (m, 15H, aromatic-H); ¹³C NMR (CDCl₃) δ : 11.94, 28.06, 29.99, 38.06, 67.96, 68.05, 68.64, 73.16, 73.95, 76.66, 77.85, 84.03, 128.22, 128.44, 128.81, 129.50, 129.70, 130.18, 130.25, 133.69, 133.73, 138.17, 165.92, 172.12, 206.43.

Synthesis of [$^{13}C_6$]-17. Using the procedure described above, reaction of [$^{13}C_6$]-14 (867 mg, 1.18 mmol) with cesium levulinoate (1.80 g, 7.26 mmol) and 18-crown-6 (1.00 g, 3.78 mmol) in toluene (20 ml) gave [$^{13}C_6$]-17 (717 mg, 99 % yield); TLC mobility in agreement with that of the unlabelled compound; Found: m/z(FAB), 635 [M+Na]+. $^{13}C_6$ $^{12}C_2$ 7H₃₄O₉S requires: 612.

Methyl 2,3,4,6-tetra-O-benzyl-1-thio- β -D-galactopyranoside (22)¹⁶

Synthesis of Unlabelled 22. To a stirred solution of 17 (92 mg, 152 µmol) in MeOH (5 ml) containing phenolphthalein (cat.) was added sodium methoxide (cat.) and the mixture was stirred overnight at room temperature. The reaction mixture was neutralised with Amberlite resin IRC-50 (H+) ion-exchange resin,

filtered and concentrated *in vacuo*. The residue was dissolved in dry DMF (30 ml), and benzyl bromide (330 μ l, 2.77 mmol) and sodium hydride (120 mg, 60% dispersion in mineral oil, 3.00 mmol) were added successively at 0°C. The mixture was stirred for 24h at room temperature, quenched by careful addition of MeOH, and diluted with diethyl ether and water. The aqueous layer was extracted four times with diethyl ether, and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (350 mg) was purified by column chromatography [silica gel (18 g); toluene/EtOAc (20/1-10/1)] to give 22 (70 mg, 81 % yield); Rf 0.41 [n-hexane/EtOAc (5/1)]; ¹H NMR (CDCl₃) δ : 2.01 (s, 3H, SCH₃), 3.85 (t, 1H, J = 9.6 Hz, H-2), 3.97 (d, 1H, J = 2.7 Hz, H-4), 4.34 (d, 1H, J = 9.6 Hz, H-1), 4.61 (d, 1H, J = 11.7 Hz, C₆H₅CH₂O), 4.73 (s, 2H, C₆H₅CH₂O), 4.82 (d, 1H, J = 10.2 Hz, C₆H₅CH₂O), 4.86 (d, 1H, J = 10.2 Hz, C₆H₅CH₂O), 4.95 (d, 1H, J = 11.7 Hz, C₆H₅CH₂O), 7.38-7.25 (m, 20H, aromatic-H).

Synthesis of $[^{13}C_6]$ -22. Using the procedure described above, reaction of $[^{13}C_6]$ -17 (515 mg, 841 µmol) with phenolphthalein (cat.) and sodium methoxide (cat.) in MeOH (5 ml), followed by benzylation with benzyl bromide (2.00 ml, 16.8 mmol), sodium hydride (700 mg, 60% dispersion in mineral oil, 17.5 mmol) in dry DMF (30 ml) gave $[^{13}C_6]$ -22 (429 mg, 89 % yield); TLC mobility in agreement with that of the unlabelled compound.

2,3,4,6-Tetra-O-benzyl- α -D-galactopyranosyl chloride (23)¹⁶

Synthesis of Unlabelled 23. To a stirred, ice-cold mixture of 22 (60 mg, 109 μ mol) in CH₂Cl₂ (1 ml) containing 4Å molecular sieves (75 mg) was added dropwise iodine monochloride (300 μ l, 1.0M in CH₂Cl₂, 300 μ mol) and the mixture was stirred for 20 min. The reaction mixture was diluted with ice-cold CH₂Cl₂, quenched with cold aq. Na₂S₂O₃ solution (15% w/v) and filtered. The aqueous layer was quickly extracted twice with CH₂Cl₂, the combined organic extracts were back-washed with cold sat. NaHCO₃ solution and ice-cold brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (100 mg) was purified by column chromatography [silica gel (5 g); toluene/EtOAc (100/1-50/1)] to give 23 (56 mg, 92 % yield); Rf 0.84 [toluene/EtOAc (7/1)]; ¹H NMR (CDCl₃) δ : 4.73 (d, 1H, J = 11.7 Hz, C₆H₅CH₂O), 4.77 (d, 1H, J = 11.7 Hz, C₆H₅CH₂O), 4.86 (d, 1H, J = 11.1 Hz, C₆H₅CH₂O), 4.95 (d, 1 H, J = 11.1 Hz, C₆H₅CH₂O), 6.19 (d, 1 H, J = 3.9 Hz, H-1), 7.25-7.39 (m, 20 H, aromatic-H).

Synthesis of $[^{13}C_6]$ -23. Using the procedure described above, reaction of $[^{13}C_6]$ -22 (77 mg, 140 µmol) with iodine monochloride (140 µl, 1.0M in CH₂Cl₂, 140 µmol) and 4Å molecular sieves (150 mg) in CH₂Cl₂ (1.5 ml) gave $[^{13}C_6]$ -23 (62 mg, 82 % yield); TLC mobility in agreement with that of the unlabelled compound.

(2-Trimethylsilyl)ethyl O-(2,3-di-O-benzoyl-6-O-benzyl-4-O-levulinoyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (24)

Synthesis of Unlabelled 24. To a stirred, ice-cold mixture of 4 (60 mg, 109 μmol), 17 (83 mg, 137 μmol), N-(phenylseleno)phthalimide (52 mg, 172 μmol) in CH₂Cl₂ (1.5 ml) containing 4Å molecular sieves (180 mg) under nitrogen was added dropwise trimethylsilyl trifluoromethanesulfonate (27 μl, 149 μmol). The mixture was stirred for 1h at 0°C, diluted with EtOAc, neutralised with NaHCO₃ solution, and filtered through a pad of Celite. The aqueous layer was extracted three times with EtOAc, and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (140 mg) was purified

by column chromatography [silica gel (7 g); toluene/EtOAc (7/1)] to give 24 (101 mg, 84 % yield); Rf 0.56 [toluene/EtOAc (7/1)]; [α]_D +10.2 (c 1.6, CHCl₃); Found: C, 68.01; H, 6.74. C₆₄H₇₂O₁₅Si•H₂O requires: C, 68.18; H, 6.62%; ¹H NMR (CDCl₃) &: 0.00 (s, 9H, Si*Me*₃), 0.86-1.03 (m, 2H, OCH₂CH₂SiMe₃), 2.05, (s, 3H, COC*H*₃), 2.48-2.66 (m, 4H, OCH₂CH₂COCH₃), 3.76 (dd, 1H, J = 6.6 and 6.9 Hz, H-5), 4.31 (d, 1H, J = 7.8 Hz, H-1), 4.32 (d, 1H, J = 12.0 Hz, C₆H₅CH₂O), 4.34 (d, 1H, J = 11.7 Hz, C₆H₅CH₂O), 4.44 (d, 1H, J = 11.7 Hz, C₆H₅CH₂O), 4.64 (d, 1H, J = 12.0 Hz, C₆H₅CH₂O), 4.71 (d, 1H, J = 11.1 Hz, C₆H₅CH₂O), 4.82 (d, 1H, J = 10.8 Hz, C₆H₅CH₂O), 4.89 (d, 1H, J = 11.1 Hz, C₆H₅CH₂O), 4.90 (d, 1H, J = 8.1 Hz, H-1'), 5.01 (d, 1H, J = 10.8 Hz, C₆H₅CH₂O), 5.25 (dd, 1H, J = 10.5 and 3.3 Hz, H-3'), 5.58 (dd, 1H, J = 10.5 and 8.1 Hz, H-2'), 5.68 (d, 1H, J = 3.3 Hz, H-4'), 7.89-7.17 (m, 30H, aromatic-H); ¹³C NMR (CDCl₃) δ : -1.59, 18.30, 27.65, 29.53, 37.61, 66.86, 67.27, 67.72, 67.90, 70.43, 71.96, 72.06, 73.40, 74.30, 74.78, 75.28, 81.90, 82.72, 100.44, 103.08, 127.38, 127.52, 127.76, 127.99, 128.17, 128.28, 128.38, 128.48, 128.58, 129.28, 129.77, 133.20, 133.31, 137.96, 138.18, 138.81, 139.20, 165.13, 165.49, 171.73, 205.90.

Synthesis of $[^{13}C_6]$ -24. Using the procedure described above, reaction of $[^{13}C_6]$ -4 (117 mg, 210 µmol) and $[^{13}C_6]$ -17 (140 mg, 229 µmol) with N-(phenylseleno)phthalimide (90 mg, 297 µmol) and 4Å molecular sieves (500 mg) in CH₂Cl₂ (5 ml) gave $[^{13}C_6]_2$ -24 (204 mg, 84 % yield); TLC mobility in agreement with that of the unlabelled compound; Found: m/z(FAB), 1143 [M+Na]⁺. $^{13}C_{12}$ ¹²C₅₂H₇₂O₁₅Si requires: 1120.

(2-Trimethylsilyl)ethyl O-(2,3-di-O-benzoyl-6-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (25)

Synthesis of Unlabelled 25. To a stirred, ice-cold solution of 24 (97 mg, 87.4 µmol) in MeOH (3 ml) was added hydrazine acetate (150 mg, 134 mmol) and the mixture was stirred overnight at room temperature. The reaction mixture was diluted with EtOAc and sat. NaHCO3 solution. The aqueous layer was extracted twice with EtOAc, and the combined organic extracts were washed with dilute HCl (2 N), water, sat. NaHCO3 solution and brine, dried over Na₂SO₄ and concentrated in vacuo. The resulting residue (130 mg) was purified by column chromatography [silica gel (6 g); toluene/EtOAc (7/1)] to give 25 (79 mg, 90 % yield); Rf 0.61 [toluene/EtOAc (7/1)]; m.p. 93-94 °C (n-hexane/Et₂O); [α]_D +28.1 (c 0.78, CHCl₃); Found: C, 69.95; H, 6.50. $C_{59}H_{66}O_{13}Si$ requires: C, 70.08; H, 6.58%; ¹H NMR (CDCl₃) δ : 0.00 (s, 9H, SiMe₃), 0.96-1.02 (m, 2H, OCH₂CH₂SiMe₃), 4.39 (d, 1H, J = 12.0 Hz, C₆H₅CH₂O), 4.42 (d, 1H, J = 12.3 Hz, C₆H₅CH₂O), 4.58 (d, 1H, J = 12.0 Hz, $C_6H_5CH_2O$), 4.70 (d, 1H, J = 11.1 Hz, $C_6H_5CH_2O$), 4.85 (d, 1H, J = 11.4 Hz, $C_6H_5CH_2O$), 4.88 (d, 1H, J = 8.1 Hz, H-1'), 4.89 (d, 1H, J = 11.4 Hz, $C_6H_5CH_2O$), 5.00 (d, 1H, J = 11.1Hz, $C_6H_5CH_2O$), 5.13 (dd, 1 H, J = 10.2 and 3.0 Hz, H-3'), 5.72 (dd, 1 H, J = 10.2 and 8.1 Hz, H-2'), 7.24-7.98 (m, 30 H, aromatic-H); ¹³C NMR (CDCl₃) δ : -1.58, 18.33, 67.30, 67.63, 68.12, 68.41, 70.45, 72.87, 73.33, 73.54, 74.33, 74.48, 74.75, 75.18, 76.86, 81.99, 82.97, 100.74, 103.08, 127.22, 127.55, 127.75, 127.84, 128.04, 128.17, 128.30, 128.50, 129.29, 129.50, 129.74, 129.92, 133.24, 133.37, 137.82, 138.31, 138.80, 139.41, 165.25, 165.91.

Synthesis of $[^{13}C_6]$ -25. Using the procedure described above, reaction of $[^{13}C_6]$ -24 (171 mg, 153 µmol) with hydrazine acetate (260 mg,2.82 mmol) in MeOH (5 ml) gave $[^{13}C_6]$ -25 (136 mg, 87 % yield); TLC mobility in agreement with that of the unlabelled compound; Found: m/z(FAB), 1046 [M+Na]⁺. $^{13}C_{12}$ $^{12}C_{52}$ H72O₁₅Si requires: 1022.

(2-Trimethylsilyl)ethyl O-(2,3,4,6-tetra-O-benzyl- α -D-galactopyranosyl)-(1 \rightarrow 4)-O-(2,3-di-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (26)

Synthesis of Unlabelled 26. A stirred mixture of 25 (53 mg, 52.4 µmol) and 23 (100 mg, 179 µmol) in CH₂Cl₂ (4.5 ml) containing s-collidine (26 µl, 197 µmol) and 4Å molecular sieves (400 mg) under nitrogen was cooled to -60°C and light was excluded. Silver trifluoromethanesulfonate (105 mg, 409 µmol) was added and the mixture was stirred for 1.5h, followed by a further 3h at room temperature. The reaction mixture was diluted with EtOAc, neutralised with sat. NaHCO3 solution, and filtered through a pad of Celite. The aqueous eluate was extracted three times with EtOAc, and the combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The resulting residue (200 mg) was purified by column chromatography [silica gel (10 g); toluene/EtOAc (15/1)] to give protected trisaccharide 26 (69 mg, 86 % yield); Rf 0.76 [toluene/EtOAc (7/1)]; $[\alpha]_D$ +43.0 (c 1.1, CHCl₃); Found: C, 72.13; H, 7.16. $C_{93}H_{100}O_{18}Si \cdot H_2O$ requires: C, 72.82; H, 6.57%; ¹H NMR (CDCl₃) δ : -0.01 (s, 9H, SiMe₃), 0.96-1.02 (m, 2H, $OCH_2CH_2SiMe_3$), 5.07 (d, 1H, J = 10.8 Hz, H-3'), 5.76 (dd, 1H, J = 10.8 and 8.1 Hz, H-2'), 7.18-7.91 (m, 50H, aromatic-H); ¹³C NMR (CDCl₃) δ: -1.58, 18.36, 67.27, 67.83, 68.32, 69.50, 70.75, 72.37, 72.90, 73.01, 73.30, 73.76, 74.12, 74.36, 74.76, 74.91, 75.64, 79.11, 82.04, 82.54, 100.71, 101.00, 103.01, 127.32, 127.53, 127.59, 127.78, 127.89, 128.01, 128.09, 128.27, 128.40, 128.50, 129.40, 129.67, 129.95, 133.16, 133.21, 138.39, 138.50, 138.76, 138.81, 138.86, 139.05, 139.37, 165.33, 166.59. Synthesis of $[^{13}C_6]$ -26. Using the procedure described above, reaction of $[^{13}C_6]$ 2-25 (35 mg, 34.1 µmol) and [$^{13}C_6$]-23 (45 mg, 80.0 µmol) with silver trifluoromethanesulfonate (45 mg, 175 µmol), s-collidine (11 µl, 83.2 µmol) and 4Å molecular sieves (100 mg) in dry CH_2Cl_2 (1 ml) gave [13C₆]₃-26 (47 mg, 88 % yield); TLC mobility in agreement with that of the unlabelled compound; Found: m/z(FAB), 1573 [M+Na]+. $^{13}C_{18}^{12}C_{75}H_{100}O_{18}Si$ requires: 1550.

(2-Trimethylsilyl)ethyl O-(2,3,4,6-tetra-O-benzyl- α -D-galactopyranosyl)-(1 \rightarrow 4)-O-(6-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (27)

Synthesis of Unlabelled 27. A solution of 26 (15 mg, 9.78 µmol) in MeOH (4 ml) containing sodium methoxide (cat.) was stirred overnight at room temperature. The reaction mixture was then neutralised with Amberlite IRC-50 (H⁺) ion-exchange resin, filtered and concentrated *in vacuo*. The residue was partitioned between EtOAc and water, and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue (40 mg) was purified by column chromatography [silica gel (2 g); toluene/EtOAc (3/1)] to give 27 (13 mg, quantative yield); Rf 0.60 [toluene/EtOAc = (2/1)]; $[\alpha]_D$ +22.5 (c 0.61, CHCl₃); Found: m/z(FAB), 1347.7069 [M+Na]⁺. C₇₉H₉₂O₁₆Si requires: 1347.7053 [M]; ¹H NMR (CDCl₃) δ : 0.00 (s, 9 H, SiMe₃); ¹HNMR data were complicated, but it was clear that the reaction had taken place since the H-2' and H-3' signals were shifted to higher field [from 5.07ppm (H-3' on 26) and 5.76ppm (H-2' on 26) to over 4.97ppm]; ¹³C NMR (CDCl₃) δ : 1.40, 18.54, 67.38, 68.48, 69.62, 70.94, 72.96, 73.28, 73.70, 74.04, 74.55, 74.59, 74.81, 74.94, 75.18, 79.21, 80.45, 82.24, 83.42, 100.67, 103.26, 103.60, 127.37, 127.75, 128.23, 138.51.

Synthesis of $[^{13}C_6]$ -27. Using the procedure described above, reaction of $[^{13}C_6]$ 3-26 (44 mg, 28.4 µmol) with sodium methoxide (cat.) and MeOH (10 ml) gave $[^{13}C_6]$ 3-27 (31 mg, 82 % yield); TLC mobility in

agreement with that of the unlabelled compound; Found: m/z(FAB), 1366 [M+Na]⁺. ¹³C₁₈¹²C₆₁H₉₂O₁₆Si requires: 1343.

(2-Trimethylsilyl)ethyl $O-\alpha$ -D-galactopyranosyl- $(1\rightarrow 4)$ - $O-\beta$ -D-galactopyranosyl- $(1\rightarrow 4)$ - β -D-glucopyranoside (2)¹⁵

Synthesis of Unlabelled 2. To a stirred solution of 27 (5 mg, 3.77 µmol) in MeOH (2 ml) was added palladium hydroxide on carbon (20 % Pd, 13 mg) and the mixture was stirred overnight at room temperature under hydrogen. The reaction mixture was filtered and concentrated in vacuo. The resulting residue (5 mg) was purified by column chromatography (Sephadex LH-20; methanol) to give 2 (2 mg, 88 %); 2: Rf 0.18 [EtOAc/EtOH/water (9/2/1)]; [α]_D +42.4 (c 0.76, MeOH); Found: m/z(FAB), 627.2291 [M+Na]⁺. C₂₃H₄₄O₁₆SiNa requires: 627.2297; ¹H NMR (D₂O) δ : 0.03 (s, 9 H, OCH₂CH₂SiMe₃), 4.33 (t, 2H, J = 6.0 Hz, H-5"), 4.47 (d, 1H, J = 8.1 Hz, H-1), 4.49 (d, 1H, J = 7.5 Hz, H-1'), 4.93 (d, 1H, J = 3.9 Hz, H-1"); ¹³C NMR (D₂O) δ : -2.61, 17.53, 59.65, 59.99, 60.14, 68.04, 68.20, 68.59, 68.76, 70.43, 70.57, 71.81, 72.56, 74.24, 74.42, 75.06, 77.02, 78.30, 100.00 (C-1"), 101.13 (C-1), 102.96 (C-1").

Synthesis of $[^{13}C_6]$ -2. Using the procedure described above, reaction of $[^{13}C_6]_3$ -27 (13 mg, 9.68 µmol) with palladium hydroxide on carbon (20% Pd, 18 mg) in MeOH (1 ml) under hydrogen gave $[^{13}C_6]_3$ -2 (6 mg, quantitative yield); TLC mobility and carbon-decoupled 1 H NMR data in agreement with that of the unlabelled compound; Found: m/z(FAB), 645.2941 [M+Na]+. $^{13}C_{18}^{12}C_5^{144}O_{16}^{16}$ SiNa requires: 645.2901.

Acknowledgements

We acknowledge the BBSRC for providing financial support. Dr. T. J. Rutherford and Mrs. M. H. Smith are thanked for assistance with NMR spectroscopy, Mrs. S. Williamson for assistance with microanalysis and Mr. C. Millar and for assistance with in-house mass spectromerty. We also thank Dr J.A. Ballantine and colleagues at the EPSRC Mass Spectrometry Service Centre, Swansea.

References and Notes

- 1. Further information can be obtained from HS (hs7@st-andrews.ac.uk) or RAF (raf2@st-andrews.ac.uk).
- 2. Armstrong, G. L.; Hollingsworth, J.; Morris Jr., J. G. *Epidemiol. Rev.*, **1996**, *18*, 29-51. Vernozy-Rozand, C.; Ray-Gueniot, S. *Rev. Méd. Vét.*, **1997**, *148*, 169-178.
 - Lansbury, L. E.; Ludlam, H. J. Infection, 1997, 34, 189-193.
 - Buchanan, R. L.; Doyle, M. P. Food Technol., 1997, 51, 69-76.
 - Neill, M. A. J. Food Protection, 1997, 60, 1444-1446.
- 3. Brunton, J. *Molecular Biology of Bacterial Pathogenesis*. Miller, V.; Kaper, J.; Portnoy, D.; Isberg, R. (eds); AMS Press; Washington DC, **1994**, 391-404
- 4. Merritt, E. A.; Hol, W. G. J. Curr. Op. Struc. Biol., 1995, 5, 165-171
- 5. Stein, P. E.; Boodhoo, A.; Tyrrell, G. J.; Brunton, J. L.; Read, R. J. Nature, 1992, 355, 748-750.
- 6. Fraser, M. E.; Chernaia, M. M.; Kozlov, Y. V.; James, M. N. G. Nature Struc. Biol., 1994, 1, 59-64.
- 7. Richardson, J. M.; Evans, P. D.; Homans, S. W.; Donohue-Rolfe, A. *Nature Struc. Biol.*, **1997**, *4*, 190-193.
- 8. Zhang, Z; Magnusson, G. J. Org. Chem., 1995, 60, 7304-7315; Zhang, Z; Magnusson, G. J. Org. Chem., 1996, 61, 2383-2393. For biological data see reference 12.

- 9. St. Hilaire, P. M.; Boyd, M. K; Toone, E. J. Biochemistry, 1994, 33, 14452-14463.
- 10. Clark, C.; Bast, D.; Sharp, A. M.; St. Hilaire, P. M.; Agha, R.; Stein, P. E.; Toone, E. J., Read, R. J.; Brunton, J.L. Mol. Microbiol., 1996, 19, 891-899.
- 11. Reviewed in: Nyholm, P-G.; Magnusson, G.; Zheng, Z.; Norel, R.; Binnington-Boyd, B.; Lingwood, C.A. Chemistry & Biology, 1996, 3, 263-275
- 12. Ling, H.; Boodhoo, A.; Hazes, B.; Cummings, M.D.; Armstrong, G.D.; Brunton, J.L.; Read, R.J. *Biochemistry*, **1998**, *37*, 1777-1788.
- 13. Low, D. G.; Probert, M. A.; Embleton, G.; Sheshadri, K.; Field, R. A.; Homans, S. W.; Windust, J.; Davis, P. J. *Glycobiology*, **1997**, 7, 373-381.
 - Probert, M. A.; Milton, M. J.; Harris, R.; Schenkman, S.; Brown, J. M.; Homans, S. W.; Field, R. A. *Tetrahedron Lett.*, 1997, 38, 5861-6864.
 - Harris, R., PhD thesis, Development of NMR methods for conformational analysis of ¹³-C-enriched oligosaccharides, University of St. Andrews, 1997.
- 14. Hashimoto, S.; Sakamoto, H.; Honda, T.; Abe, H.; Nakamura, S.; Ikegami, S. Tetrahedron Lett., 1997, 38, 8969-8972.See also references 8 and 9, and references cited therein.
- 15. Groenberg, G.; Nilsson, U.; Bock, K.; Magnusson, G. Carbohydr. Res., 1994, 257, 35-54.
- 16. Koike, K.; Sugimoto, M.; Sato, S.; Ito, Y.; Nakahara, Y.; Ogawa, T. Carbohydr. Res., 1987, 163, 189-208.
- 17. Jansson, K.; Ahlfors, S.; Frejd, T.; Kihlberg, J.; Magnusson, G.; Dahmen, J.; Noori, G.; Stenvall, K. J. Org. Chem., 1988, 53, 5629-5647.
- 18. Shimizu, H.; Ito, Y.; Ogawa, T. Synlett, 1994, 535-536.
- 19. Bols, M.; Hansen, H. C. Chem. Lett., 1994, 6, 1049-1052.
- 20. Shimizu, T.; Hiranuma, S.; Nakata, T. Tetrahedron Lett., 1996, 37, 6145-6148.
- 21. Kanie, O.; Crawley, S. C.; Palcic, M. M., Hindsgaul, O. Carbohydr. Res., 1993, 243, 139-164.
- 22. Byramova, N.E.; Ovchinnikov, M.V.; Backinowsky, L.V.; Kochetkov, N.K. Carbohydr. Res., 1983, 124, c8-c11
- 23. Nakano, T.; Ito, Y.; Ogawa, T. Carbohydr. Res., 1993, 243, 43-69. Shimizu, H.; Ito, Y.; Kanie, O.; Ogawa, T. Bioorg. Med. Chem. Lett., 1996, 6, 2841-2846.
- 24. Garegg, P. J; Hultberg, H.; Wallin, S. Carbohydr. Res., 1982, 108, 97-101.
- 25. Lipták, A.; Szabó, L. J. Carbohydr. Chem., 1989, 8, 629-644.
- 26. DeNinno, M. P.; Etienne, J. B.; Duplantie, K. C. Tetrahedron Lett., 1995, 36, 669-672.
- 27. Kartha, K. P. R.; Field, R. A. Tetrahedron Lett., 1997, 38, 8233-8236.
- 28. Wolform, M. L.; Thompson, A. Methods Carbohydr. Chem., 1963, 2, 211-215.
- 29. Cerny, M.; Pacak, J. Collect. Czech. Chem. Commun., 1959, 24, 2566-2569.